

SECURBOT
MISSION 10

TABLE OF CONTENTS

¶ SECURE-BOT ... 1

Your Role: Security Guard .. 1

Your Task : Defend a Treasure ... 1

Considerat ions .. 1

Materials .. 1

¶ LEARN: RADIO .. 2

Program the GiggleBot .. 2

Program the Additional Micro:Bit ... 6

Test It Out ... 7

¶ PLAN IT OUT... 8

Security Robot Features .. 8

Programming ... 8

Build Your Robot Guard ... 10

Build Your Program ... 11

¶ ARE YOU STUCK?? ... 12

Work Plan ... 13

Build Your Security Robot .. 14

Program the GiggleBot .. 14

Program the Additional Micro:Bit .. 24

¶ TRY IT OUT! .. 32

Iterate .. 32

Challenge .. 33

M I S S I O N 1 0 : S E C U R E- B O T P A G E 1

© 2 0 1 9 D E X T E R I N D U S T R IE S

 SECURE-BOT

YOUR ROLE: SECURITY GUARD

i A security guard is a person employed to protect some thing specific from a variety of
hazards.

YOUR TASK: DEFEND A TREASURE

You have been put in charge of keeping a treasure safe. You must not let anyone get to the treasure.

To do this you will create a security robot. If the location of the treasure is compromised, the robot

will send a signal to another micro:bit to warn of t he intrusion. You will also utilize your skills and

materials from previous missions to add other methods for deterring the intruder

CONSIDERATIONS

What will your GiggleBot be in charge of protecting? Your room? A slice of cake in the refrigerator?

Your favorite toy hidden in a cabinet? Your clothes in the closet?

MATERIALS

 GiggleBot and good batteries

 Micro:bit and provided cable

 Laptop / computer

 Distance sensor and sensor mount

 Servo(s) and some means to secure them

 Pipe cleaners

 Scissors

 Alligator clips

 Speaker

 Additional micro:bit

 Craft supplies or recycleables such as construction paper, cardboard, and tape

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 2

© 2 0 1 9 D E X T E R I N D U S T R IE S

 LEARN: RADIO

In mission 8, we learned how to use an additional micro:bit to control the GiggleBot using radio

signals. In this mission , we will be sending signals from the GiggleBot to the additional micro:bit as

well as messages from the additional micro:bit back to the GiggleBot. This will be like an alert or

notification on your phone, except it will be on a micro:bit . We will need to program both the

GiggleBot and the additional micro:bit . Look for the icon to identify code that goes on the

GiggleBot and for the icon for code that goes onto the additional micro:bit.

 PROGRAM THE GIGGLEBOT

We are going to create a program for the GiggleBot to send

a message whenever the light level in the room has

changed. For this program we will use the light sensor on

the micro:bit that is attached to the GiggleBot. There are also

light sensors on the GiggleBot, but we will not use them for

now. However, you may want to use them in your own security robot program.

¥ŦǱѫǥ program the GiggleBot to detect if the light level has changed from dark to light. If the light

level changes, it will send a message to the additional micro:bit .

 èǱĻǝǱ Ļ ƭŦȒ ǙǝƶƜŦŘǱз Ļƭş ƭĻƪŦ ǱƇŦ ǙǝƶƜŦŘǱ ѨƀǺĻǝşƌĻƭѩм

 We need to set the radio group. Put a radio set group __ block

(found under Radio) inside of a on start block to set the radio group

for your GiggleBot.

i Remember, if there are multiple groups of GiggleBots and additional micro:bits being
programmed, each set will need a different radio group number (unless you want several
GiggleBots to communicate with on e another) .

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 3

© 2 0 1 9 D E X T E R I N D U S T R IE S

 DISPLAY LIGHT LEVEL

Now, move a forever block onto your workspace. Then, add a

show number __ block to the forever loop. Instead of showing just

one number, move a light level block into the forever loop.

You can find the light level block under Input:

The GiggleBot will display the light value as seen by its own micro:bit. Play with the light level

around the GiggleBot: use a blanket to create a shadow, or bring it close to a light source. Verify

that the displayed number does change accordingly.

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 4

© 2 0 1 9 D E X T E R I N D U S T R IE S

 REACT TO CHANGE IN LIGHT LEVEL
Now, we will program the GiggleBot to react to a change in light level.

 Add an if __ then __block to the forever loop. This block can be found under

Logic.

Attach a 0 < 0 block to the if part of the if __ then __ block, thus replacing

the true word . This block can also be found under Logic.

 In the comparison block, add a light level block, replacing the first 0 .

 Change the comparison sign and value to your desired light level. The micro:bit light sensor

reads 0 as complete darkness and 255 as maximum brightness.

Now, you need to decide what message you will send to the additional micro:bit when the light level

changes.

 Attach a radio send string __ block to the then __ portion of the if __ then __ block. Inside of

the quotation marks write a message to appear on the additional micro:bit when the light levels

around the GiggleBot change.

In th is example, the additional

micro:bit ȒƌƢƢ şƌǥǙƢĻȘ ǱƇŦ ǱŦȗǱ Ѩ¥ƌƀƇǱǥ

ƶƭѩ ȒƇŦƭ ǱƇŦ ƢƌƀƇǱ ƢŦȑŦƢ ĻǝƶǺƭş ǱƇŦ

GiggleBot changes from dark to

light.

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 5

© 2 0 1 9 D E X T E R I N D U S T R IE S

 TAKE ORDERS FROM ADDITIONAL MICRO:BIT
Last, we will add on code so that the additional micro:bit can communicate with the GiggleBot as

well. For this program the additional micro:bit is going to send a 2 to the GiggleBot when the light

level changes from dark to light. You can change this number, but it will need to match the value

sent by the additional micro:bit .

 Move an on radio received receivedNumber block to the

workspace. This block can be found under Radio.

 Inside this block we will tell the GiggleBot what to do when it

receives a number from the additional micro:bit

Put an if __ then __ block inside the

on radio received receivedNumber block.

 Attach a 0 = 0 block to the if __ portion of the if __ then __ block.

 Inside of this block place a receivedNumber block (found

under Variables) in the first place for a value.

receivedNumber is a variable that will change value based

on what number is sent by the additional micro:bit.

 Now, we will tell the GiggleBot what to do when it receives

a 2 from the additional micro:bit . Since turning on lights

ƪĻȘ ƪŦĻƭ Ļƭ ƌƭǱǝǺşŦǝ ƇĻǥ ŦƭǱŦǝŦş ǱƇŦ ǝƶƶƪз ƢŦǱѫǥ ǱŦƢƢ ǱƇŦ

GiggleBot to display a red smile. The blocks to control the

lights on the GiggleBot can be found under Lights .

Download and transfer this program to the GiggleBot.

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 6

© 2 0 1 9 D E X T E R I N D U S T R IE S

 PROGRAM THE ADDITIONAL MICRO:BIT

Now we need to program the additional micro:bit to receive

messages from the GiggleBot.

 Start a new ǙǝƶƜŦŘǱ ƌƭ ­ĻƟŦŘƶşŦм °ĻƪŦ ƌǱ ѨĻƢĻǝƪѩм

First, we need to set the radio group to match that of the

GiggleBot. Remember, if there are other people

programming micro:bit s and GiggleBots nearby, each

person/group needs to use a different radio group.

 Put a radio set group 1 block (found under Radio) inside of a on start

block to set the radio group for your GiggleBot. Change the group if needed.

 RESPONDING TO MESSAGES RECEIVED FROM GIGGLEBOT
 Next, move an on radio received receivedString block onto your

workspace. Inside this block we will tell the additional micro:bit

what to do when it receives a message from the GiggleBot.

For this program we will tell the additional micro:bit to display the message sent by the GiggleBot.

 Move a show string ___ block inside of the

on radio received receivedString block.

Since we want the additional micro:bit to display whatever message is sent by the GiggleBot, we

will add a variable block to the portion where the message is written.

 Move a receivedString (found under Variables) to the

portion of the show string block , replacing the default

ѨlŦƢƢƶйѩ ǥǱǝƌƭƀм

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 7

© 2 0 1 9 D E X T E R I N D U S T R IE S

 SENDING MESSAGES TO GIGGBLEBOT
Last, we will add to the program to allow the additional micro:bit to communicate back to the

GiggleBot.

 Add an on button A pressed block to your workspace.

This will allow you to communicate back to the GiggleBot by pressing

button A on the additional micro:bit .

 Inside of this block attach a radio send 0 block.

 Change the value inside this block to 2 since that is the value we

programmed the GiggleBot to receive.

Download and transfer this project to the additional micro:bit .

TEST IT OUT

Turn off the lights in the room and turn on the GiggleBot and the additional micro:bit .

 What happens when you turn on the lights?

 Did the additional micro:bit display a message that the lights were on?

 What happens when you press the A button on the addi tional micro:bit ? Did the GiggleBot

display a red smile?

Now that you have learned how to program two micro:bit s to communicate with one another, you

are ready to create a robotic security guard. !

M I S S I O N 1 0 : P L A N I T O U T P A G E 8

© 2 0 1 9 D E X T E R I N D U S T R IE S

 PLAN IT OUT

SECURITY ROBOT FEATURES

How will you utilize all of the materials from the missions in your security guard robot? Make a list

of the materials and jot down your ideas next to each item.

1 Distance sensor
2 Servo(s)
3 Speaker
4 Light sensor (built in)

 What movements or changes in the environment will the robot be able to detect and react to?

¶ Change in light level?
¶ An object getting close to it?
¶ Being turned upside down?

 What will your robot look like?

¶ Will it be a dragon with wings that flap?
¶ A monster with a large mouth full of teeth?
¶ A spy car equipped with defense mechanisms?

PROGRAMMING

Think about what you want the GiggleBot to react to. Write down what the GiggleBot will do in each

ƶž ǱƇŦ ǥƌǱǺĻǱƌƶƭǥм õƇƌǥ ȒƌƢƢ ƇŦƢǙ ȘƶǺ Ǳƶ ǙǝƶƀǝĻƪ ǱƇŦ eƌƀƀƢŦ<ƶǱѫǥ ǝŦĻŘǱƌƶƭǥ Ļǥ ȒŦƢƢ Ļǥ ǱƇŦ ƪŦǥǥĻƀŦǥ

it sends to the other micro:bit .

Create a chart like the one next page with everything that you want the GiggleBot to do and send

alerts about.

 You do not need to incorporate all of the actions in the chart below, but you need to utilize all of

the sensors :

 light sensor
 distance sensor
 gyroscope (detects a change in orientation such as being tilted or turned upside down)
 speaker
 onboard LEDs

M I S S I O N 1 0 : P L A N I T O U T P A G E 9

© 2 0 1 9 D E X T E R I N D U S T R IE S

ACTION GIGGLEBOT
REACTION

M ESSAGE TO
MICRO:BIT

RADIO TRANSMISSION
(fill in the number you plan
to use for each)

Room lights turn ed on

Object detected

(distance sensor)

GiggleBot moved

(gyroscope)

GiggleBot upside

down (gyro scope)

Speaker sound

M I S S I O N 1 0 : P L A N I T O U T P A G E 1 0

© 2 0 1 9 D E X T E R I N D U S T R IE S

BUILD YOUR ROBOT GUARD

Attach the distance sensor, speaker, and servo(s) to your GiggleBot. Add any additional decorations

to make your robot look like the desired type of security guard.

M I S S I O N 1 0 : P L A N I T O U T P A G E 1 1

© 2 0 1 9 D E X T E R I N D U S T R IE S

BUILD YOUR PROGRAM

Use your plan from the chart above to program your GiggleBot security guard. Remember that you

will need to program the micro:bit on the Gigglebot as well as the additional micro:bit . These are

two separate programs.

One program is transferred to the GiggleBot : The other program is transferred to your

additional micro:bit:

Also be sure to plug in the distance sensor to one of the I2C ports and to connect the speaker using

alligator clips.

Look back to previous missions if you need help connecting the distance sensor and speaker.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 2

© 2 0 1 9 D E X T E R I N D U S T R IE S

 ARE YOU STUCK??

¥ŦǱѫǥ ŖǺƌƢş ǱƶƀŦǱƇŦǝй !ǥ ǱƇƌǥ ƌǥ ǱƇŦ ƪƶǥǱ ŘƶƪǙƢŦȗ ǙǝƶƜŦŘǱ ǥƶ žĻǝз ƌǱѫǥ ŖŦŦƭ ǥǙƢƌǱ ƌƭǱƶ ǥƪĻƢƢŦǝ ǙĻǝǱǥм eƶ

through each step, one by one. First, attempt it on your own and if you need h elp, check the

following pages.

Work Plan ... 13

Build Your Security Robot .. 14

Program the GiggleBot .. 14

Reacting to Changes in its Environment ...15
 A: Turning on the Lights ...15
 B: Detection of an Object (distance sensor) .. 16
 >ж EŦǱŦŘǱƌƶƭ ƶž eƌƀƀƢŦ<ƶǱ ­ƶȑŦƪŦƭǱ ѐѨƶƭ ǥƇĻƟŦѩё............................ 17
 D: Reacting to Being Turned Upside Down (On Logo D own) 18
Receiving Signals from the Additional micro:bit ... 20
 E: Alarm Sounding ... 20
 F: Driving Forward in Attack Mode ... 21
 G: Stop the GiggleBot ... 22
Final GiggleBot Code .. 23

Program the Additional Micro:Bit .. 24

Reacting to Signals from the GiggleBot ...24
 A: Turning on the Lights .. 25
 B: Detection of an Object (distance sensor) .. 26
 >ж EŦǱŦŘǱƌƶƭ ƶž eƌƀƀƢŦ<ƶǱ ­ƶȑŦƪŦƭǱ ѐѨƶƭ ǥƇĻƟŦѩё........................... 27
 D: Reacting to Being Turned Upside Down ..28
Sending Signals to the Giggle Bot ... 29
 E: Alarm Souding ... 29
 F: Driving Forward in Attack Mode .. 29
 G: Stop the GiggleBot .. 30
Final Additional Micro:bit Code .. 31

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 3

© 2 0 1 9 D E X T E R I N D U S T R IE S

First, we need to decide what the GiggleBot will do in each of the situations below. Here are some

ideas for each action and reaction. We will use this plan to build a robotic security guard.

WORK PLAN

 ACTION GIGGLEBOT REACTION M ESSAGE TO
MICRO:BIT

RADIO TRANSMISSION
(fill in the number you

plan to use for each)

A Room lights turn on LED smile turns red Ѩ¥ƌƀƇǱǥйѩ

B Object detected

(distance sensor)

Blink orange /white

smile

Ѩq°õàýELàйѩ

C GiggleBot moved LED Sad Face Ѩ­ƶȑƌƭƀйѩ

D GiggleBot turned upside

down

Servos move arms up

and down

LED ANGRY

FACE

E Additional micro:bit:

Button A pressed

Speaker sound

F Additional micro:bit:

Button B pressed

GiggleBot drives forward

quickly

G Additional micro:bit љ

Button A + B pressed

GiggleBot stops

i For a feature to function fully, you will need to code the feature in both the GiggleBot and
the additional micro:bit.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 4

© 2 0 1 9 D E X T E R I N D U S T R IE S

BUILD YOUR SECURITY ROBOT

Gather all of your materials for your GiggleBot security robot. You will need:

 GiggleBot + micro:bit
 Additional micro:bit + battery pack
 Distance sensor and sensor mount
 Speaker
 Alligator clips
 2 servos
 Pipe cleaners to secure the servos and speaker
 Supplies for decoration (if desired)

Attach your dista nce sensor, speaker, and servos to your GiggleBot. In the example program below

we will program the servos to move arms made of craft supplies. If you are not sure how to connect

something, look back to previous missions for step -by-step directions.

Once your GiggleBot security guard has all of its extra components attached, it is time to program!

 PROGRAM THE GIGGLEBOT

We will write the GiggleBot program. Give it a name so

you will be able to identify and reload it.

First, we will set the radio group.

i Remember, if there are multiple groups of GiggleBots and additional micro:bits being
programmed, each set will need a different radio group number.

 Put a radio set group __ block (found under Radio) inside of a on start block to set the radio

group for your GiggleBot.

°ŦȗǱз ȒŦ ȒƌƢƢ ǙǝƶƀǝĻƪ ǱƇŦ eƌƀƀƢŦ<ƶǱѫǥ ǝŦĻŘǱƌƶƭǥ Ǳƶ şƌžžŦǝŦƭǱ ĻŘǱƌƶƭǥ ƶǝ ŘƇĻƭƀŦǥм Each of the

following sections is to be added to the above on start sequence. Your program will grow and grow!

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 5

© 2 0 1 9 D E X T E R I N D U S T R IE S

 REACTING TO CHANGES IN ITS ENVIRONMENT
Steps A to D deal with the GiggleBot reacting to changes in its environment that signal the presence

of an intruder. Messages are going to be sent to the second microbit as alert messages.

 A: TURNING ON THE LIGHTS
The first condition we are looking for is a change in the light level. If the lights are turned on, the

LED smile will turn red and the GiggleBot will send a message to the additional micro:bit. Add this

code to what you already have on your workspace .

 Move a forever block onto your workspace. Place an

if __ then __ block inside of the forever block.

 Attach a 0 < 0 block (found under Logic) to the if __ part of the

if __ then __ block.

 In the comparison block, add a light level (found under Input) block to the first place for a

value. Change the comparison sign and value to your desired light level.

i The micro:bit light sensor reads 0 in complete darkness and 255 as maximum brightness.

We will now attach blocks to the then __ portion of the if __ then __ block to tell the GiggleBot

what to do when this condition is met. Based on the plan above, we need to :

1 connect a display red smile block.

2 send a message to the additional micro:bit.

We will send the message by sending a number to the

additional micro:bit. Later, we will tell the additional micro:bit

what to do when it receives each of the numbers. Connect a

radio send number __ block below the display red smile

block. Change this number to 1. Now your GiggleBot will react

to the light s being turned on!

Transfer your code to the GiggleBot and test it out!

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 6

© 2 0 1 9 D E X T E R I N D U S T R IE S

 B: DETECTION OF AN OBJECT (DISTANCE SENSOR)
We now need another if __ then __ ŖƢƶŘƟ Ǳƶ ǙǝƶƀǝĻƪ ǱƇŦ eƌƀƀƢŦ<ƶǱѫǥ ǝŦĻŘǱƌƶƭ Ǳƶ şŦǱŦŘǱƌƭƀ Ļƭ ƶŖƜŦŘǱ

using the distance sensor. We will follow the same basic process that we used for the light sensor

to program the GiggleBot to react to a change in the distance sensor reading. Add the follo wing to

what you already have in your workspace.

 Place this if __ then __ block underneath the first if __ then __
block for the light sensor readings.
Attach an obstacle is closer than __ mm block (found under
GiggleBot) to the if __ portion of the new if __ then __ block.
EŦǱŦǝƪƌƭŦ ȒƇĻǱ ǱƇŦ ѨƭƶǝƪĻƢѩ ȑĻƢǺŦ žƶǝ ǱƇŦ şƌǥǱĻƭŘŦ ǥƇƶǺƢş ŖŦ
below.
How close should something be able to get to the GiggleBot before
it reacts? Your value may be different than the one in the example .

In our plaƭз ǱƇŦ eƌƀƀƢŦ<ƶǱѫǥ ǝŦĻŘǱƌƶƭ Ǳƶ Ļ ƶŖƜŦŘǱ ƀŦǱǱƌƭƀ ŘƢƶǥŦ ƌǥ Ǳƶ ŖƢƌƭƟ Ļƭ ƶǝĻƭƀŦ ǥƪƌƢŦ Ļƭş ǥŦƭş Ļ

signal to the additional micro:bit.

 Insert a radio send number __ block in the then __ part of the
if __ then __ block.

 Change the number to 2, per our plan.

Since we want the GiggleBot to blink an orange and white smile, we will need to use a loop.

 Attach a repeat __ times block to the then __- portion of the
if __ then __ block. You can change the number of times that the
orange smile blinks by changing the number in this block.

 Inside of the repeat loop, connect a display red smile block and
change red to orange .

 After, this block add a pause 100 ms block. Change the value of
this block to tell the GiggleBot how long to wait before changing to
the next color smile.

 Add another display red smile block and change this one to
white .

 Add one more pause 100 ms as well and change the value to match the first one.

Transfer your code and test your program to ensure the reaction to an obstacle works as intended !

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 7

© 2 0 1 9 D E X T E R I N D U S T R IE S

 C: DETECTION OF GIGGLEB¹õ ­¹ĔL­L°õ ѐѨ¹° èl!£Lѩё

Next we will program the robot to react to being moved by usi ng the using the accelorometer on

the GiggleBot's micro:bit. ĕŦ Ļşş Ǳƶ ǱƇŦ ŘƶşŦ ȒŦѫȑŦ ĻƢǝŦĻşȘ şƶƭŦм

 Move an on shake event block to your workspace. This block is found under Input .

Inside the on shake event block, connect blocks to tell the GiggleBot what to do if it is shaken. Using

the plan above, the GiggleBot should first send a radio message with the number 3 and then display

a sad face on the GiggleBot micro:bit.

 Connect a send radio number block and change the value to 3.

 Connect a show icon block to the on shake event block.

 Change the icon to a sad face.

The GiggleBot needs to send a signal to the additional micro:bit that it has been picked up or

moved. We will do this by sending anot her number to the additional micro:bit. Later, we will tell

the additional micro:bit what to do when it receives each of the numbers

Your GiggleBot will now react if it is shaken! Transfer your code and test it out!

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 8

© 2 0 1 9 D E X T E R I N D U S T R IE S

 D: REACTING TO BEING TURNED UPSIDE DOWN (ON LOGO DOWN)
According to our planз ǱƇŦ eƌƀƀƢŦ<ƶǱѫǥ ǝŦĻŘǱƌƶƭ to being upside down is waving its arms . The

GiggleBot will wave the servo -controlled arms 5 times. You can control each servo individually, in

mirror, or in synchro.

 Move another on shake block to the workspace.

 Using the drop -down menu change this to on logo down

 The GiggleBot needs to send a signal to the additional

micro:bit. We will do this by sending the number 4. Later,

we will tell the additional micro:bit what to do when it

receives each of the numbers.

 Connect a repeat 4 times block to the on logo down block.

 Change the repeat value to your desired number of

repetitions .

 Inside of the repeat block, connect a set right servo to 0

block to the on logo down block

 Change right to both in mirror . Then, change the value to

tell the Gigglebot to raise its arms

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 9

© 2 0 1 9 D E X T E R I N D U S T R IE S

 Add a pause 100 ms block next.

 Change the value of the pause to tell the GiggleBot how

long to wait before moving the servos again. The lower the

number, the faster the servos will move back and forth .

 Now, connect another set right servo to 0 block .

 Use the drop -down menu to change right to both in mirror .

You may prefer both in synchro .

 Add one last pause 100 ms block .

 Change this value to tell the GiggleBot how long to wait

before moving the servos again

Your GiggleBot will now wave its arms if it is flipped over!

Transfer your code and test it out!

